Friday, November 22, 2013

DIGITAL LOGIC - COMBINATION CIRCUIT(2'S COMPLEMENT NUMBER OPERATION )

2'S COMPLEMENT NUMBER OPERATION 


Definition of one’s complement
  • The ones' complement of a binary number is defined as the value obtained by inverting all the bits in the binary representation of the number (swapping 0's for 1's and vice-versa).
  • In this form, a negative number is the 1’s complement of the corresponding positive number.
  • The 1’s complement of a binary number is found by changing all 1s to 0s and all 0s to 1s as shown below:

+2810 = 000111002
-2810 = 111000112 (1’s complement of +25)


Definition of two’s complement
  • Two's complement is a mathematical operation on binary numbers, as well as a representation of signed binary numbers based on this operation. The two's complement of an N-bit number is defined as the complement with respect to 2N, in other words the result of subtracting the number from 2N
  •  The 2’s complement of a binary number can be obtained by adding 1 to one’s complement:
2’s complement = (1’s complement) + 1



Example:

  • The negative (-) decimal number conversion is done in next steps .Lets we convert -118.

1. Separate the sign and magnitude number of -1 .If the sign bits is 1, its represent      as  negative sign in the 2s complement conversion.

2. Convert the decimal number to its 7-bits binary equivalent.

  Decimal
   8-bits binary number

   Note

sign
          Magnitude


    118
  0
1110110
Convert to 7-bits binary



0001001
1stcomplement
Each 0 is changed to 1 and each 1 to 0.


0001010
2nd









Another Example:

Express the decimal number -55 as an 8-bit in the sign-magnitude, 1’s complement, and 2’s complement forms.


SOLUTION:

8-bit number for + 5510 = 001101112

Sign-magnitude form for -5510 = 101101112

  •  Change the sign bit to a 1 and leave the magnitude bits as they are 1’s complement form for -5510 = 110010002

  • Take the 1’s complement of +55 by changing all 1’s to 0s and 0s to 1s

2’s complement form for -5510 =

          11001000    1's complement
+                       1                        
           11001001    2's complement



2’s Complement Operations

  • Two Positive Numbers
    1410                              000011102
+  2510          -------->     +    000110012
    3910                               001001112  


Positive Number and Smaller Negative Number
    

                2910  
           -    1510


SOLUTION:

1. Find the binary numbers for 2910
            2910        =     000111012

2. Find the binary form for -1510 using 2's complement
            -1510      =     111100012
3. Add the binary numbers

                                             000111012
                                       +   111 100012
                                            1000011102
                                                          |           
                                    |
                                    |
                            Discard carry over

Positive Number and Larger Negative Number

               1210
        -      2510
 

Tasks:

1. Find the binary form for 1210
2. Find the binary form for −2510 using 2’s complement
3. Add the binary numbers

Solution:

1 :+122   -------->  000011002
2 : 
             +2510    ------>   000110012
             -2510     ------>  111001102
                                  +             1  
                                    111001112

3 :
           1210                              000011002
     +( -2510)         -------->   +  111001102
                                                                            111100112= -1310

Check the answer using  2's complement

       111100112     -------->        000011002
                                               +               1  
                                                  00001101= +1310

No comments:

Post a Comment