Sunday, November 24, 2013

Boolean Equation Forms

BOOLEAN EQUATION FORMS

      ·         Can be represented in two forms:

                                 i.     Sum-of-Products (SOP)
Ø  Combination of input values that produces one (1)
Ø  Easier to derive from truth table

A
B
C
X
Product term
0
0
0
0

0
0
1
1
A’B’C
0
1
0
0

0
1
1
0

1
0
0
1
AB’C’
1
0
1
0

1
1
0
0

1
1
1
1
ABC

SOP Expression:
X = A’B’C + AB’C’ + ABC

                               ii.     Product-of-Sums (POS)
Ø  Input combinations that produces zero (0) in sum terms
Ø  Usually use if more one (1) produce in output function

A
B
C
X
Product term
0
0
0
0
A+B+C
0
0
1
0
A+B+C’
0
1
0
0
A+B’+C
0
1
1
1

1
0
0
1

1
0
1
0
A’+B+C’
1
1
0
1

1
1
1
1


POS Expression:
                X = (A+B+C)(A+B+C’)(A+B’+C)(A’+B+C’)

(Note that the method is reversible. We can find SOP/POS expression from truth table or build the truth table from the expression.)

      ·         Two ways to simplify Boolean equation:

1.       Laws of Boolean Algebra


AND Form
OR Form
Notes
Identity Law
A•1 = A
A+0 = A

Zero and One Law
A•0 = 0
A+1 = 1

Inverse Law
A•Ā = 0
A+Ā = 1

Idempotent Law
A•A = A
A+A = A

Communication Law
A•B = B•A
A+B = B+A

Association Law
A•(B•C) = (A•B)•C
A+(B+C) = (A+B)+C

Distribution Law
A+(B•C)=(A+B)•(A+C)
A•(B+C) = (A•B)+(A•C)
Reverse Derivation
(A+B)•(A+C)=AA+AC+AB+BC→AA=A
                       =A+AC+AB+BC
                       =A+AB+BC
                       =A(1+B)+BC
                       =A•1+BC
                       =A+BC
Absorption Law
A(A+B) = A
A+A•B = A
A+A’B = A+B
A(A+B)=A(1+B)           →1+B=1
              =A(1)              →A•1=A
              =A

A(A+B)=AA+AB           →A•A=A
              =A+AB            →A(1+B)=A(1)
              =A

A+A’B=(A+AB)A’B       →A=A•A
            =(AA+AB)+A’B
            =AA+AB+A’B
            =(A+A’)(A+B)
            =1•(A+B)           →A+A’=1
            =(A+B)

DeMorgan’s Law

(A•B)’ = A’+B’

(A+B)’ = A’•B’

If you break the line, change the sign.
Double Complement Law

X” = X


2.       Karnaugh Map

No comments:

Post a Comment