BOOLEAN
EQUATION FORMS
· Can be represented in two forms:
i. Sum-of-Products (SOP)
Ø Combination of
input values that produces one (1)
Ø Easier to
derive from truth table
A
|
B
|
C
|
X
|
Product term
|
0
|
0
|
0
|
0
|
|
0
|
0
|
1
|
1
|
A’B’C
|
0
|
1
|
0
|
0
|
|
0
|
1
|
1
|
0
|
|
1
|
0
|
0
|
1
|
AB’C’
|
1
|
0
|
1
|
0
|
|
1
|
1
|
0
|
0
|
|
1
|
1
|
1
|
1
|
ABC
|
SOP Expression:
X = A’B’C + AB’C’ + ABC
ii. Product-of-Sums (POS)
Ø Input
combinations that produces zero (0) in sum terms
Ø Usually use if
more one (1) produce in output function
A
|
B
|
C
|
X
|
Product term
|
0
|
0
|
0
|
0
|
A+B+C
|
0
|
0
|
1
|
0
|
A+B+C’
|
0
|
1
|
0
|
0
|
A+B’+C
|
0
|
1
|
1
|
1
|
|
1
|
0
|
0
|
1
|
|
1
|
0
|
1
|
0
|
A’+B+C’
|
1
|
1
|
0
|
1
|
|
1
|
1
|
1
|
1
|
POS Expression:
X = (A+B+C)(A+B+C’)(A+B’+C)(A’+B+C’)
(Note that the method is reversible. We can find SOP/POS expression from
truth table or build the truth table from the expression.)
· Two ways to simplify Boolean equation:
1.
Laws of Boolean Algebra
AND Form
|
OR Form
|
Notes
|
|
Identity Law
|
A•1 = A
|
A+0 = A
|
|
Zero and One Law
|
A•0 = 0
|
A+1 = 1
|
|
Inverse Law
|
A•Ā = 0
|
A+Ā = 1
|
|
Idempotent Law
|
A•A = A
|
A+A = A
|
|
Communication Law
|
A•B = B•A
|
A+B = B+A
|
|
Association Law
|
A•(B•C) = (A•B)•C
|
A+(B+C) = (A+B)+C
|
|
Distribution Law
|
A+(B•C)=(A+B)•(A+C)
|
A•(B+C) = (A•B)+(A•C)
|
Reverse Derivation
(A+B)•(A+C)=AA+AC+AB+BC→AA=A
=A+AC+AB+BC
=A+AB+BC
=A(1+B)+BC
=A•1+BC
=A+BC
|
Absorption Law
|
A(A+B) = A
|
A+A•B = A
A+A’B = A+B
|
A(A+B)=A(1+B) →1+B=1
=A(1) →A•1=A
=A
A(A+B)=AA+AB →A•A=A
=A+AB →A(1+B)=A(1)
=A
A+A’B=(A+AB)A’B →A=A•A
=(AA+AB)+A’B
=AA+AB+A’B
=(A+A’)(A+B)
=1•(A+B) →A+A’=1
=(A+B)
|
DeMorgan’s Law
|
(A•B)’ = A’+B’
|
(A+B)’ = A’•B’
|
If you break the line, change the sign.
|
Double Complement Law
|
X” = X
|
2.
Karnaugh Map
No comments:
Post a Comment